Tutor HuntResources Engineering Resources

High Voltage Direct Current Transmission

Advantages of HVDC transmission

Date : 05/06/2017

Author Information

Muhammad Irfan

Uploaded by : Muhammad Irfan
Uploaded on : 05/06/2017
Subject : Engineering

A high-voltage, direct current (HVDC) electric power transmission system (also called a power super highway or an electrical super highway) uses direct current for the bulk transmission of electrical power, in contrast with the more common alternating current (AC) systems.[5] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be justified, due to other benefits of direct current links.

HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between source and load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing exchange of power between incompatible networks.

The modern form of HVDC transmission uses technology developed extensively in the 1930s in Sweden (ASEA) and in Germany. Early commercial installations included one in the Soviet Union in 1951 between Moscow and Kashira, and a 100 kV, 20 MW system between Gotland and mainland Sweden in 1954. The longest HVDC link in the world is the Rio Madeira link in Brazil, which consists of two bipoles of 600 kV, 3150 MW each, connecting Porto Velho in the state of Rond nia to the S o Paulo area. The length of the DC line is 2,375 km (1,476 mi).

In July 2016, ABB Group received a contract in China to build an ultra-high-voltage direct-current (UHVDC) land cable with a 1100 kV voltage, a 3,000 km (1,900 mi) length and 12 GW of power, setting world records for highest voltage, longest distance and largest transmission capacity.

High voltage is used for electric power transmission to reduce the energy lost in the resistance of the wires. For a given quantity of power transmitted, doubling the voltage will deliver the same power at only half the current. Since the power lost as heat in the wires is proportional to the wires` resistance as a share of the total resistance, and doubling voltage allows for the quadrupling of non-transmission resistance without losing power, doubling the voltage reduces the line losses per unit of electrical power delivered by approximately a factor of 4. While power lost in transmission can also be reduced by increasing the conductor size, larger conductors are heavier and more expensive.High voltage cannot readily be used for lighting or motors, so transmission-level voltages must be reduced for end-use equipment.

Transformers are used to change the voltage levels in alternating current (AC) transmission circuits. Because transformers made voltage changes practical, and AC generators were more efficient than those using DC, AC became dominant after the introduction of practical systems of distribution in Europe in 1891 and the conclusion in 1892 of the War of Currents, a competition being fought on many fronts in the US between the DC system of Thomas Edison and the AC system of George Westinghouse.

A long distance point to point HVDC transmission scheme generally has lower overall investment cost and lower losses than an equivalent AC transmission scheme. HVDC conversion equipment at the terminal stations is costly, but the total DC transmission line costs over long distances are lower than AC line of the same distance. HVDC requires less conductor per unit distance than an AC line, as there is no need to support three phases and there is no skin effect.






This resource was uploaded by: Muhammad Irfan